Overview
The course provides an overview of the atmospheric and space environment experienced by suborbital spacecraft. It builds an understanding of the Earth’s atmosphere from the troposphere over the stratosphere and mesosphere to the thermosphere and the near-Earth space environment. The course will introduce the relevant aspects of each environment with a focus on dynamics, chemistry, radiation environment and energetic particle environment, and discuss effects on spacecraft where applicable. The course will also discuss measurement techniques for key quantities in the various environments. The course will close with an outlook on space weather and an overview of the atmospheric environment of Mars.
Course Objectives
The course will provide each student with a basic knowledge about the Earth’s atmosphere from the troposphere to the near-Earth space environment. The student with be able to apply basic concepts that describe these environments. The course will introduce the student to simple models of Earth’s atmosphere and allow him or her to apply them to questions concerning the atmospheric environment. It will introduce the student to relevant measurement techniques of atmospheric environments and outline how suborbital measurements contribute to the characterization of these environments. Students will be able to apply this knowledge of environmental effects on spacecraft and measurement design.
Textbooks
- Sagan C., The Demon-haunted World – Science as a Candle in the Dark, Random house, 1996.
- Frederick, J. F., Principles of Atmospheric Science, Jones and Bartlett, 2008.
- Catling, D. C. and Kasting, J. F., Atmospheric Evolution on Inhabited and Lifeless Worlds, Cambridge, 2017.
- Tascione, T. F., Introduction to the space environment (2nd), Krieger, 2010.
- Fortescue, P., Swinerd, G., Stark, J., Spacecraft Systems Engineering (4th), Wiley, 2011.
- Haberle, R. M., et al., The Atmosphere and Climate of Mars, Cambridge, 2017.
Lectures and Assignments
This is a 3-credit course that consists of ten webinars in two-hour blocks (1.5 hours of lectures plus time for discussion of assignments) and six assignments. Two assignments will consist of self-study tasks to be summarized in write-ups/presentations, four assignments will based on questions and calculations. Students will receive either a Pass or Fail grade.
The course will be run via GoToMeeting. Webinars will be held on Fridays from early February to mid-April and tentatively be scheduled at 4:00-6:00 pm PST/PDT (7:00-9:00 pm EST/EDT).
Schedule:
Webinar 1 |
February 7, 2020 |
Webinar 2 |
February 14, 2020 |
Webinar 3 |
February 21, 2020 |
Webinar 4 |
February 28, 2020 |
Webinar 5 |
March 6, 2020 |
Webinar 6 |
March 13, 2020 |
Webinar 7 |
March 20, 2020 |
Webinar 8 |
March 27, 2020 |
Webinar 9 |
April 3, 2020 |
Webinar 10 |
April 10, 2020 |
Webinar 1
Introduction to the Scientific Method
Introduction to the Earth’s Atmosphere
Atmospheric structure
Concept of scale height
Hydrostatic equation and barometric formula
Webinar 2
Radiative Properties of the Atmosphere – Climate
Black body radiation
Interactions of light with matter
Atmospheric transmission
Atmospheric energy balance and greenhouse effect
Webinar 3
Troposphere (1)
Atmospheric lapse rate
Atmospheric stability and clouds
Forces driving wind
Impact of weather on spacecraft operations
Webinar 4
Troposphere (2)
Tropospheric circulation
Synoptic weather systems and fronts
Numerical weather prediction
Hazardous weather
Webinar 5
Stratosphere
Stratospheric dynamics
Concept of potential temperature and gravity waves
Concept of potential vorticity and planetary waves
Stratospheric ozone chemistry and polar stratospheric clouds
Impact of air traffic on the stratosphere
Webinar 6
Mesosphere
Mesospheric composition and chemistry
Mesospheric temperatures and energy balance
Mesospheric dynamics, gravity waves and tides
Polar mesospheric clouds and polar mesospheric summer echoes
Webinar 7
Upper Atmosphere: Thermosphere
Thermospheric energy input
Thermospheric composition and chemistry
Thermospheric structure
Environmental effects on spacecraft
Webinar 8
Upper Atmosphere: Ionosphere
Ionospheric layers
Impact on radio transmissions
Optical effects in the upper atmosphere
Webinar 9
Upper Atmosphere: Exosphere and Near-Earth Space Environment
Movement of charged particles
Earth’s magnetic field
Magnetosphere and Van Allen radiation belts
Solar energetic particles and cosmic rays – space weather
Exobase and atmospheric escape
Environmental effects on spacecraft
Webinar 10
Comparative Planetology: Introduction to Mars’ Atmosphere
Mars’ atmospheric structure and composition
Seasonal and diurnal temperature cycles
Dust and condensates and their radiative effects
Entry, descent and landing of spacecraft on Mars
Instructor: Dr. Armin Kleinboehl, Ph.D.
Schedule: 7 February to 10 April 2020
Location: PoSSUM Virtual Classroom
Cost: $625 (Open University)
Credits: 2 (IIAS Continuing Education)